skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Zhiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server Connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. null (Ed.)
  3. Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGISJupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)